WebRTC 的音频网络对抗概述

如题所述

第1个回答  2022-07-20

WebRTC 音频数据处理中,期望可以实现音频数据处理及传输,延时低,互动性好,声音平稳无抖动,码率低消耗带宽少等。在数据传输上,WebRTC 采用基于 UDP 的 RTP/RTCP 协议,RTP/RTCP 本身不提供数据的可靠传输及质量保障。公共互联网这种分组交换网络,天然具有数据包传输的丢失、重复、乱序及延时等问题。WebRTC 音频数据处理的这些目标很难同时实现,WebRTC 的音频网络对抗实现中针对不同情况对这些目标进行平衡。

这里更仔细地看一下 WebRTC 音频数据处理管线,并特别关注与音频网络对抗相关的逻辑。

前面在 WebRTC 的音频数据编码及发送控制管线 一文中分析了 WebRTC 的音频数据编码及发送控制相关逻辑,这里再来看一下 WebRTC 的音频数据接收及解码播放过程。

WebRTC 的音频数据接收处理的概念抽象层面的完整流程大体如下:

对于 WebRTC 的音频数据接收处理过程, webrtc::AudioDeviceModule 负责把声音 PCM 数据通过系统接口送进设备播放出来。 webrtc::AudioDeviceModule 内部一般会起专门的播放线程,由播放线程驱动整个解码播放过程。 webrtc::AudioTransport 作为一个适配和胶水模块,它把音频数据播放和 webrtc::AudioProcessing 的音频数据处理及混音等结合起来,它通过 webrtc::AudioMixer 同步获取并混音各个远端音频流,这些混音之后的音频数据除了返回给 webrtc::AudioDeviceModule 用于播放外,还会被送进 webrtc::AudioProcessing ,以作为回声消除的参考信号。 webrtc::AudioMixer::Source / webrtc::AudioReceiveStream 为播放过程提供解码之后的数据。RTCP 反馈在 webrtc::AudioMixer::Source / webrtc::AudioReceiveStream 中会通过 webrtc::Transport 发送出去。 webrtc::Transport 也是一个适配和胶水模块,它通过 cricket::MediaChannel::NetworkInterface 实际将数据包发送网络。 cricket::MediaChannel 从网络中接收音频数据包并送进 webrtc::AudioMixer::Source / webrtc::AudioReceiveStream 。

如果将音频数据接收处理流水线上的适配和胶水模块省掉,音频数据接收处理流水线将可简化为类似下面这样:

webrtc::AudioMixer::Source / webrtc::AudioReceiveStream 是整个过程的中心,其实现位于 webrtc/audio/audio_receive_stream.h / webrtc/audio/audio_receive_stream.cc ,相关的类层次结构如下图:

在 RTC 中,为了实现交互和低延迟,音频数据接收处理不能只做包的重排序和解码,它还要充分考虑网络对抗,如 PLC 及发送 RTCP 反馈等,这也是一个相当复杂的过程。WebRTC 的设计大量采用了控制流与数据流分离的思想,这在 webrtc::AudioReceiveStream 的设计与实现中也有体现。分析 webrtc::AudioReceiveStream 的设计与实现时,也可以从配置及控制,和数据流两个角度来看。

可以对 webrtc::AudioReceiveStream 执行的配置和控制主要有如下这些:

对于数据流,一是从网络中接收到的数据包被送进 webrtc::AudioReceiveStream ;二是播放时, webrtc::AudioDeviceModule 从 webrtc::AudioReceiveStream 获得解码后的数据,并送进播放设备播放出来;三是 webrtc::AudioReceiveStream 发送 RTCP 反馈包给发送端以协助实现拥塞控制,对编码发送过程产生影响。

webrtc::AudioReceiveStream 的实现中,最主要的数据处理流程 —— 音频数据接收、解码及播放过程,及相关模块如下图:

这个图中的箭头表示数据流动的方向,数据在各个模块中处理的先后顺序为自左向右。图中下方红色的框中是与网络对抗密切相关的逻辑。

webrtc::AudioReceiveStream 的实现的数据处理流程中,输入数据为音频网络数据包和对端发来的 RTCP 包,来自于 cricket::MediaChannel ,输出数据为解码后的 PCM 数据,被送给 webrtc::AudioTransport ,以及构造的 RTCP 反馈包,如 TransportCC、RTCP NACK 包,被送给 webrtc::Transport 发出去。

webrtc::AudioReceiveStream 的实现内部,音频网络数据包最终被送进 NetEQ 的缓冲区 webrtc::PacketBuffer 里,播放时 NetEQ 做解码、PLC 等,解码后的数据提供给 webrtc::AudioDeviceModule 。

这里先来看一下, webrtc::AudioReceiveStream 实现的这个数据处理流水线的搭建过程。

webrtc::AudioReceiveStream 实现的数据处理管线是分步骤搭建完成的。我们围绕上面的 webrtc::AudioReceiveStream 数据处理流程图 来看这个过程。

在 webrtc::AudioReceiveStream 对象创建,也就是 webrtc::voe::(anonymous namespace)::ChannelReceive 对象创建时,会创建一些关键对象,并建立部分对象之间的联系,这个调用过程如下:

webrtc::AudioReceiveStream 通过 webrtc::Call 创建,传入 webrtc::AudioReceiveStream::Config,其中包含与 NACK、jitter buffer 最大大小、payload type 与 codec 的映射相关,及 webrtc::Transport 等各种配置。

webrtc::voe::(anonymous namespace)::ChannelReceive 对象的构造函数如下:

webrtc::voe::(anonymous namespace)::ChannelReceive 对象的构造函数的执行过程如下:

图中标为绿色的模块为这个阶段已经接入 webrtc::voe::(anonymous namespace)::ChannelReceive 的模块,标为黄色的则为那些还没有接进来的模块;实线箭头表示这个阶段已经建立的连接,虚线箭头则表示还没有建立的连接。

在 ChannelReceive 的 RegisterReceiverCongestionControlObjects() 函数中, webrtc::PacketRouter 被接进来:

这个操作也发生在 webrtc::AudioReceiveStream 对象创建期间。 ChannelReceive 的 RegisterReceiverCongestionControlObjects() 函数的实现如下:

这里 webrtc::PacketRouter 和 webrtc::ModuleRtpRtcpImpl2 被连接起来,前面图中标号为 5 的这条连接也建立起来了。NetEQ 在需要音频解码器时创建音频解码器,这个过程这里不再赘述。

这样 webrtc::AudioReceiveStream 内部的数据处理管线的状态变为如下图所示:

webrtc::AudioReceiveStream 的生命周期函数 Start() 被调用时, webrtc::AudioReceiveStream 被加进 webrtc::AudioMixer :

这样 webrtc::AudioReceiveStream 的数据处理管线就此搭建完成。整个音频数据处理管线的状态变为如下图所示:

WebRTC 音频数据接收处理的实现中,保存从网络上接收的音频数据包的缓冲区为 NetEQ 的 webrtc::PacketBuffer ,收到音频数据包并保存进 NetEQ 的 webrtc::PacketBuffer 的过程如下面这样:

播放时, webrtc::AudioDeviceModule 最终会向 NetEQ 请求 PCM 数据,此时 NetEQ 会从 webrtc::PacketBuffer 中取出数据包并解码。网络中传输的音频数据包中包含的音频采样点和 webrtc::AudioDeviceModule 每次请求的音频采样点不一定是完全相同的,比如采样率为 48kHz 的音频, webrtc::AudioDeviceModule 每次请求 10ms 的数据,也就是 480 个采样点,而 OPUS 音频编解码器每个编码帧中包含 20ms 的数据,也就是 960 个采样点,这样 NetEQ 返回 webrtc::AudioDeviceModule 每次请求的采样点之后,可能会有解码音频数据的剩余,这需要一个专门的 PCM 数据缓冲区。这个数据缓冲区为 NetEQ 的 webrtc::SyncBuffer 。

webrtc::AudioDeviceModule 请求播放数据的大体过程如下面这样:

更加仔细地审视 WebRTC 的音频数据处理、编码和发送过程,更完整地将网络对抗考虑进来, WebRTC 的音频数据处理、编码和发送过程,及相关模块如下图:

在 WebRTC 的音频数据处理、编码和发送过程中,编码器对于网络对抗起着巨大的作用。WebRTC 通过一个名为 audio network adapter (ANA) 的模块,根据网络状况,对编码过程进行调节。

pacing 模块平滑地将媒体数据发送到网络,拥塞控制 congestion control 模块通过影响 pacing 模块来影响媒体数据发送的过程,以达到控制拥塞的目的。

由 WebRTC 的音频采集、处理、编码和发送过程,及音频的接收、解码、处理及播放过程,可以粗略梳理出 WebRTC 的音频网络对抗的复杂机制:

没看到 WebRTC 有音频带外 FEC 机制的实现。

参考文章

干货|一文读懂腾讯会议在复杂网络下如何保证高清音频

Done.

相似回答