求高中数学向量知识点

求高中数学人教版选修2-1第三章空间向量与立体几何全章以及高中数学人教版必修四平面向量的所有基础知识点,可用公式,需要注意的地方.
如果可以,希望可以提供课件.
提供的内容最好可以让一个数学基础比较差的人看得懂.

1、向量的加法:
AB+BC=AC
设a=(x,y) b=(x',y')
则a+b=(x+x',y+y')
向量的加法满足平行四边形法则和三角形法则。
向量加法的性质:
交换律:
a+b=b+a
结合律:
(a+b)+c=a+(b+c)
a+0=0+a=a
2、向量的减法
AB-AC=CB
a-b=(x-x',y-y')
若a//b
则a=eb
则xy`-x`y=0·
若a垂直b
则a·b=0
则xx`+yy`=0
3、向量的乘法
设a=(x,y) b=(x',y')
用坐标计算向量的内积:a·b(点积)=x·x'+y·y'
a·b=|a|·|b|*cosθ
a·b=b·a
(a+b)·c=a·c+b·c
a·a=|a|的平方
向量的夹角记为<a,b>∈[0,π]
Ax+By+C=0的方向向量a=(-B,A)
(a·b)·c≠a·(b·c)
a·b=a·c不可推出b=c
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y)
x=(x1+λx2)/(1+λ)
则有
y=(y1+λy2)/(1+λ)
我们把上面的式子叫做有向线段P1P2的定比分点公式
4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣*∣a∣,当λ>0时,与a同方向;当λ<0时,与a反方向。
实数λ叫做向量a的系数,乘数向量的几何意义时把向量a沿着的方向或反方向放大或缩小。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2009-10-17
向量其实很简单 不要想得太复杂,你只要会建立3维空间直角坐标系,会确定点的位置, 高考考察的内容也就是 将向量与立体几何结合起来,求2面角,证明 平行与垂直,或者两个直线所成角 那些 基础的东西课本里都有,多以不需要为了 向量卖参考书 如果 你想做题,教材完全解读和 典中点就不错
第2个回答  2009-10-17
很简单,你跑到书店,找高考的书,如《王后雄》,《知识全解》……那种厚的书,翻到你要的那块,书有时比老师要好,连由浅及深的例题也有,看个两三本,数学OK。书不在多,在与思考,我也是高中生,你最好在三本书中的例题进行归纳,如这道题哪看到过,脑海中一定要有经典题目及方法,很多时候数学是可以套的
第3个回答  2009-10-18
记住几个公式就可以了
第4个回答  2009-10-17
一部分 集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;
(2) 注意:讨论的时候不要遗忘了 的情况。
(3)
第二部分 函数与导数
1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;
⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、 、 等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数 分解为基本函数:内函数 与外函数 ;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数 的定义域是内函数 的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵ 是奇函数 ;
⑶ 是偶函数 ;
⑷奇函数 在原点有定义,则 ;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
6.函数的单调性
⑴单调性的定义:
① 在区间 上是增函数 当 时有 ;
② 在区间 上是减函数 当 时有 ;
⑵单调性的判定
1 定义法:
注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;
②导数法(见导数部分);
③复合函数法(见2 (2));
④图像法。
注:证明单调性主要用定义法和导数法。
7.函数的周期性
(1)周期性的定义:
对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期
① ;② ;③ ;
④ ;⑤ ;
⑶函数周期的判定
①定义法(试值) ②图像法 ③公式法(利用(2)中结论)
⑷与周期有关的结论
① 或 的周期为 ;
② 的图象关于点 中心对称 周期为2 ;
③ 的图象关于直线 轴对称 周期为2 ;
④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;
8.基本初等函数的图像与性质
⑴幂函数: ( ;⑵指数函数: ;
⑶对数函数: ;⑷正弦函数: ;
⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;
⑻其它常用函数:
1 正比例函数: ;②反比例函数: ;特别的
2 函数 ;
9.二次函数:
⑴解析式:
①一般式: ;②顶点式: , 为顶点;
③零点式: 。
⑵二次函数问题解决需考虑的因素:
①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。
⑶二次函数问题解决方法:①数形结合;②分类讨论。
10.函数图象:
⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法
⑵图象变换:
1 平移变换:ⅰ ,2 ———“正左负右”
ⅱ ———“正上负下”;
3 伸缩变换:
ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;
ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;
4 对称变换:ⅰ ;ⅱ ;
ⅲ ; ⅳ ;
5 翻转变换:
ⅰ ———右不动,右向左翻( 在 左侧图象去掉);
ⅱ ———上不动,下向上翻(| |在 下面无图象);
11.函数图象(曲线)对称性的证明
(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;
注:
①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;
③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;
特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;
⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
12.函数零点的求法:
⑴直接法(求 的根);⑵图象法;⑶二分法.
13.导数
⑴导数定义:f(x)在点x0处的导数记作 ;
⑵常见函数的导数公式: ① ;② ;③ ;
④ ;⑤ ;⑥ ;⑦ ;
⑧ 。
⑶导数的四则运算法则:
⑷(理科)复合函数的导数:
⑸导数的应用:
①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?
②利用导数判断函数单调性:
ⅰ 是增函数;ⅱ 为减函数;
ⅲ 为常数;
③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。
④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。
14.(理科)定积分
⑴定积分的定义:
⑵定积分的性质:① ( 常数);
② ;
③ (其中 。
⑶微积分基本定理(牛顿—莱布尼兹公式):
⑷定积分的应用:①求曲边梯形的面积: ;
3 求变速直线运动的路程: ;③求变力做功: 。
第三部分 三角函数、三角恒等变换与解三角形
1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度
⑵弧长公式: ;扇形面积公式: 。
2.三角函数定义:角 中边上任意一点 为 ,设 则:

3.三角函数符号规律:一全正,二正弦,三两切,四余弦;
4.诱导公式记忆规律:“函数名不(改)变,符号看象限”;
5.⑴ 对称轴: ;对称中心: ;
⑵ 对称轴: ;对称中心: ;
6.同角三角函数的基本关系: ;

7.两角和与差的正弦、余弦、正切公式:①

② ③ 。

8.二倍角公式:① ;
② ;③ 。

9.正、余弦定理:
⑴正弦定理: ( 是 外接圆直径 )
注:① ;② ;③ 。
⑵余弦定理: 等三个;注: 等三个。
10。几个公式:
⑴三角形面积公式: ;
⑵内切圆半径r= ;外接圆直径2R=
11.已知 时三角形解的个数的判定:

第四部分 立体几何
1.三视图与直观图:注:原图形与直观图面积之比为 。
2.表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:
⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;
⑷球体:①表面积:S= ;②体积:V= 。
3.位置关系的证明(主要方法):
⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。
⑵直线与平面平行:①线面平行的判定定理;②面面平行 线面平行。
⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。
⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。
⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。
注:理科还可用向量法。
4.求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)
⑴异面直线所成角的求法:
1 平移法:平移直线,2 构造三角形;
3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。
注:理科还可用向量法,转化为两直线方向向量的夹角。
⑵直线与平面所成的角:
①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。
注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。
⑶二面角的求法:
①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;
②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;
③射影法:利用面积射影公式: ,其中 为平面角的大小;
注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;
理科还可用向量法,转化为两个班平面法向量的夹角。
5.求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离)
⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;
⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;
⑶点到平面的距离:
①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;
5 等体积法;
理科还可用向量法: 。
⑷球面距离:(步骤)
(Ⅰ)求线段AB的长;(Ⅱ)求球心角∠AOB的弧度数;(Ⅲ)求劣弧AB的长。
6.结论:
⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;
⑵立平斜公式(最小角定理公式):
⑶正棱锥的各侧面与底面所成的角相等,记为 ,则S侧cos =S底;
⑷长方体的性质
①长方体体对角线与过同一顶点的三条棱所成的角分别为 则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。
②长方体体对角线与过同一顶点的三侧面所成的角分别为 则有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。
⑸正四面体的性质:设棱长为 ,则正四面体的:
1 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内切2 球半径: ;外接球半径: ;
第五部分 直线与圆
1.直线方程
⑴点斜式: ;⑵斜截式: ;⑶截距式: ;
⑷两点式: ;⑸一般式: ,(A,B不全为0)。
(直线的方向向量:( ,法向量(
2.求解线性规划问题的步骤是:
(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。
3.两条直线的位置关系:
相似回答