波阻抗反演方法

如题所述

最基本的反演方法可以分为基于道的反演方法和基于模型的方法(姚逢昌等,2000)。基于道的算法是最早研究的波阻抗反演方法,包括基于递归或道积分的算法。这些方法中地震道是唯一的输入,因而计算简单且速度很快,但是其结果局限于地震数据带宽的范围内,因为隐含的子波没有被消除,调谐和子波旁瓣效应没有降低,因而其使用具有很大的局限性。基于模型的波阻抗方法实际上就是以测井资料特别是声阻抗资料(一般从密度及速度测井资料获得)作为约束,以地质模型为基础,通过不断修改模型,使模型正演合成的地震资料与地震数据最佳匹配,所修改的最终模型就是反演结果。常见的基于模型的反演算法主要分为下述几种。

(1)地层或块的反演

这种算法假定地层是由波阻抗和时间构成的层块结构,通过褶积模型与地震建立联系。通过限制与地震样点数目相关的层的数目来抵消非唯一性。当地层变得薄于地震分辨率时,反演结果变得不唯一,为了降低这种多解性,通常以初始模型来作为约束。

(2)稀疏脉冲反演

这种算法假设地震反射系数序列是稀疏的,将地震道数据样点进行重新采样而得到少于地震道样点数目的反射系数序列,与块反演相同的是通过褶积模型来与地震相联系,并且也可使用外部模型作为约束并用于恢复高频及低频成分,因此稀疏脉冲反演也是宽带的。

(3)最小平方反演

这种方法也是建立一个初始模型并使反演结果最大限度地逼近初始模型,同样可作地震频谱以外的频率补偿,因而也是宽带的。

(4)地质统计学反演

这是一种全新的方法,该方法首先在地震时间域内建立储层的地质模型,然后建立三维地层网格,利用井和地震数据来确定地质统计学参数,进行地质统计学建模,将生成的可能的波阻抗与地震道进行比较。在地质统计反演中,当产生井间的储层参数的估算值时,模拟算法同时满足井和地震数据。利用井控和地质控制对波阻抗空间分布的影响,地质统计反演提供了一种强有力的从地震频带以外获得信息的方法。

(5)非线性反演

非线性反演方法是近年兴起的实用性较强、效果较好的一种反演方法,在这里作较为详细的介绍。

常用的波阻抗反演方法大多基于模型反演,即首先根据地质和测井等实际信息建立反演的初始模型,然后将模型正演计算得到的地震记录与实际观测得到的地震记录进行比较,用偏差反复修改模型,当偏差很小时,认为当前的模型即为反演结果。模型反演又分为线性反演与非线性反演两种,以模型为基础的反演方法大都基于线性褶积的思想。

由于实际地震记录是带限的,并不可避免地含有噪音,又由于该类方法涉及到诸如地震子波的不确定性、噪音干扰及层位标定不准等问题,在求解反问题中,还不能完全保证反演条件的最优化,使计算得到的波阻抗剖面带有多解性,阻碍了反演的大量使用及对反演结果的正确认识。对非线性反演的研究已经经历了多年,从方法上研究的非线性反演有模拟退火法、遗传算法、人工神经网络法和混沌算法等,这些方法在国内石油地球物理勘探中已经见到了明显的效果,其反演结果大多优于以褶积模型为基础的线性反演方法,具体表现在能进一步提高反演的纵向分辨率,与井的匹配最好,但都有一个共同的缺点,就是运行时间很长,还不能完全大批量处理二维地震资料及三维数据体。

针对线性反演与非线性反演存在的问题,笔者采用改进的约束模拟退火反演方法,在提高反演分辨率的同时又提高了处理效率。

在地震约束反演算法中,一般是由已知井给出属性参数的初始值,当由井外推时,将初始值合成地震记录,求其与实际地震信号的差值,然后由此差值计算初始值的修改值,经过反复迭代计算使其差值达到极小,则由最终的修改结果获得相应的属性参数。以上迭代计算属极小值的最优化问题,对此一般采用线性梯度法,而在地震反演中目标函数与模型之间的关系往往是高度非线性的,因而线性算法就很难得到最优解。常规的线性优化法得到的最终结果对初始值依赖很大,当钻井很少或井位偏开一定距离时,初始模型与实际模型相差较大,反演结果往往只能得到局部最优解,导致反演结果不理想。

在川东南地区地震反演中使用了新的模拟退火改进算法能克服上述缺点,获得全局最优解,并且比一般模拟退火算法优化的速度快、效率高,对约束的条件要求不严格,只要给出反演参数的取值范围,即可利用测井和地震资料形成合理的初始模型,这对于钻井资料较少的地震工区是比较合适的,下面简要介绍其方法原理。

设合成记录的理论正演记录为

y=f(m)

实际信号d与理论值f(m)之误差为:

复杂储层识别及预测

设e(m)符合Gauss分布,则期望值为零,设Ce为协方差矩阵,则有如下条件的概率密度函数:

复杂储层识别及预测

上式中,A1为非负常数,eT为误差e的转置。将(5.1)式代入得

复杂储层识别及预测

设用先验信息形成的初始模型为m。当采用Gauss分布时,其先验概率密度函数为:

复杂储层识别及预测

上式中,A2为非负常数,Cm为协方差矩阵,m0为初始模型。根据Gages公式,已知实际资料d时,m的后验概率密度函数为:

复杂储层识别及预测

式中P(y)与m无关,可取常数,将(5.1)、(5.2)两式代入(5.4)式中,得:

复杂储层识别及预测

在模拟退火中,(5.5)式还有如下定义,即

复杂储层识别及预测

其中A为非负的常数,S(m)为反演误差的目标函数,T为温度参数,由(5.5)(、5.6)式,可得目标函数:

复杂储层识别及预测

在模拟退火中采用使后验概率密度值最大化估计最优化解,这就等于使目标函数S(m)出现极小值,或相当于温度参数T的减小,即不断“降温”或“退火”。在这一过程中对解空间进行随机搜索,从而获得目标函数全局极小所对应的最优解。同时,对突破局部极小加以限制,引入接受函数:

复杂储层识别及预测

式中△S是相邻两次迭代的目标函数增量,令

复杂储层识别及预测

对属性参数的反演处理中,以时间平均方程作为密度、孔隙度、速度与波阻抗的桥梁,由目标函数可得反演的属性参数。

温馨提示:答案为网友推荐,仅供参考
相似回答