中考数学压轴题

武汉数学的中考压轴题是二次函数,有三问
一般第二问是这样的
“在(1)中的抛物线上是否存在点P(或是什么其他的字母)
使三角形APB为等腰直角三角形(或是什么其他的规则几何图形”
或者是
“…………使∠APB为多少多少度”
都是这样类似的题目
请问这样的题目有什么窍门吗?
有的话请帮忙列出来
或者是找到类似的题目及解题过程
一定要全啊 各种情况(什么三角形,正方形,等腰梯形,多少多少度)都要啊!!!!!!!!!
谢谢了 有好的答案悬赏300!
呃...能详细一点么?
比如说“是否存在一点使XXXX为梯形”
就可以分别讨论底和高
再利用平行什么的
大家说具体一点啦
分开说 直角、等边三角形,正方形,矩形,平行四边形,等腰梯形,或是使∠XXX=x°
注意啊!!!!!!!!越全越好啊!!!!
谢谢..........

温馨提示:答案为网友推荐,仅供参考
第1个回答  2008-04-19
1、在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10. 点E在下底边BC上,点F在腰AB上.
(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BE的面积;
(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;
(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求出此时BE的长;若不存在,请说明理由.
[解析] (1)由已知条件得:
梯形周长为12,高4,面积为28。
过点F作FG⊥BC于G
过点A作AK⊥BC于K
则可得:FG=12-x5 ×4
∴S△BEF=12 BE•FG=-25 x2+245 x(7≤x≤10)
(2)存在
由(1)得:-25 x2+245 x=14
得x1=7,x2=5(不合舍去)
∴存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7
(3)不存在
假设存在,显然是:S△BEF∶SAFECD=1∶2,(BE+BF)∶(AF+AD+DC)=1∶2
则有-25 x2+165 x=283
整理得:3x2-24x+70=0
△=576-840<0
∴不存在这样的实数x。
即不存在线段EF将等腰梯形ABCD的周长和面积。
同时分成1∶2的两部分

2、已知抛物线 与y轴的交点为C,顶点为M,直线CM的解析式 并且线段CM的长为
(1) 求抛物线的解析式。
(2) 设抛物线与x轴有两个交点A(X1 ,0)、B(X2 ,0),且点A在B的左侧,求线段AB的长。
(3) 若以AB为直径作⊙N,请你判断直线CM与⊙N的位置关系,并说明理由。

[解析](1)解法一:由已知,直线CM:y=-x+2与y轴交于点C(0,2)抛物线 过点C(0,2),所以c=2,抛物线 的顶点M 在直线CM上,所以
若b=0,点C、M重合,不合题意,舍去,所以b=-2。即M
过M点作y轴的垂线,垂足为Q,在
所以, ,解得, 。
∴所求抛物线为: 或 以下同下。
(1)解法二:由题意得C(0 , 2),设点M的坐标为M(x ,y)
∵点M在直线 上,∴
由勾股定理得 ,∵
∴ = ,即
解方程组 得
∴M(-2,4) 或 M‘ (2,0)
当M(-2,4)时,设抛物线解析式为 ,∵抛物线过(0,2)点,
∴ ,∴
当M‘(2,0)时,设抛物线解析式为
∵抛物线过(0,2)点,∴ ,∴
∴所求抛物线为: 或
(2)∵抛物线与x轴有两个交点,
∴ 不合题意,舍去。
∴抛物线应为:
抛物线与x轴有两个交点且点A在B的左侧,∴ ,得

(3)∵AB是⊙N的直径,∴r = , N(-2,0),又∵M(-2,4),∴MN = 4
设直线 与x轴交于点D,则D(2,0),∴DN = 4,可得MN = DN,∴
,作NG⊥CM于G,在 = r
即圆心到直线CM的距离等于⊙N的半径
∴直线CM与⊙N相切

3、已知抛物线
(1)m为何值时,抛物线与x 轴有两个交点?
(2)若抛物线与x轴交于M、N两点,当 =3,且 ≠ 时,求抛物线的解析式;
(3)若(2)中所求抛物线顶点为C,与y轴交点在原点上方,抛物线的对称轴与x轴交于点B,直线y= -x+3与x轴交于点A。点P为抛物线对称轴上一动点,过点P作PD⊥AC,垂足D在直线AC上。试问:是否存在点P,使 ?若存在,求出点P的坐标;若不存在,请说明理由。
[解析] (1)∵抛物线与x轴交于两点 ∴△>0
即: 解得:m<3
(2)∵ =3 ∴
当 时, , ∴m=2,m=-3

当 时, , ∴m=0,m=-1
∴当m=0时, (与 ≠ 矛盾,舍)
∴m=-1
(3)∵抛物线与y轴交点在原点的上方, ∴ ,
∴C(-1,4),B(-1,0)
∵直线y=-x+3与x轴交于点A ∴A(3,0)
∴BA=BC ∠PCD=45°
当点D在线段AC上时,设PD=DC=x,
∴ 解得:
当 时, ∴
当 时, ∴
当点D在AC的延长线上时,设PD=DC=x,
∴ 解得:
当 时, ∴
当 时 , ∵ ∴(舍去)
当点D在CA的延长线上时,设PD=DC=x,
∴ 解得:
当 时, ∴
当 时 , ∵ ∴(舍去)
∴ , , , 。
4、如图,已知抛物线L1: y=x2-4的图像与x有交于A、C两点,
(1)若抛物线l2与l1关于x轴对称,求l2的解析式;(3分)
(2)若点B是抛物线l1上的一动点(B不与A、C重合),以AC为对角线,A、B、C三点为顶点的平行四边形的第四个顶点定为D,求证:点D在l2上;(4分)
(3)探索:当点B分别位于l1在x轴上、下两部分的图像上时,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由。(4分)

[解析] (1)设l2的解析式为y=a(x-h)2+k
∵l2与x轴的交点A(-2,0),C(2,0),顶点坐标是(0,-4),l1与l2关于x轴对称,
∴l2过A(-2,0),C(2,0),顶点坐标是(0,4)
∴y=ax2+4
∴0=4a+4 得 a=-1
∴l2的解析式为y=-x2+4
(2)设B(x1 ,y1)
∵点B在l1上
∴B(x1 ,x12-4)
∵四边形ABCD是平行四边形,A、C关于O对称
∴B、D关于O对称
∴D(-x1 ,-x12+4).
将D(-x1 ,-x12+4)的坐标代入l2:y=-x2+4
∴左边=右边
∴点D在l2上.
(3)设平行四边形ABCD的面积为S,则
S=2*S△ABC =AC*|y1|=4|y1|
a.当点B在x轴上方时,y1>0
∴S=4y1 ,它是关于y1的正比例函数且S随y1的增大而增大,
∴S既无最大值也无最小值
b.当点B在x轴下方时,-4≤y1<0
∴S=-4y1 ,它是关于y1的正比例函数且S随y1的增大而减小,
∴当y1 =-4时,S由最大值16,但他没有最小值
此时B(0,-4)在y轴上,它的对称点D也在y轴上.
∴AC⊥BD
∴平行四边形ABCD是菱形
此时S最大=16.

5、如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).
(1)当x为何值时,OP‖AC ?
(2)求y与x 之间的函数关系式,并确定自变量x的取值范围.
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?若存在,求出x的值;若不存在,说明理由.
(参考数据:1142 =12996,1152 =13225,1162 =13456
或4.42 =19.36,4.52 =20.25,4.62 =21.16)

[解析](1)∵Rt△EFG∽Rt△ABC ,
∴ , .
∴FG= =3cm.
∵当P为FG的中点时,OP‖EG ,EG‖AC ,
∴OP‖AC.
∴ x = = ×3=1.5(s).
∴当x为1.5s时,OP‖AC .
(2)在Rt△EFG 中,由勾股定理得:EF =5cm.
∵EG‖AH ,
∴△EFG∽△AFH .
∴ .
∴ .
∴ AH= ( x +5),FH= (x+5).
过点O作OD⊥FP ,垂足为 D .
∵点O为EF中点,
∴OD= EG=2cm.
∵FP=3-x ,
∴S四边形OAHP =S△AFH -S△OFP
= •AH•FH- •OD•FP
= • (x+5)• (x+5)- ×2×(3-x )
= x2+ x+3
(0<x<3 .
(3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13∶24.
则S四边形OAHP= ×S△ABC
∴ x2+ x+3= × ×6×8
∴6x2+85x-250=0
解得 x1= , x2= - (舍去).
∵0<x<3,
∴当x= (s)时,四边形OAHP面积与△ABC面积的比为13∶24.

6、已知:如图,A(0,1)是y轴上一定点,B是x轴上一动点,以AB为边,在∠OAB的外部作∠BAE=∠OAB ,过B作BC⊥AB,交AE于点C.�
(1)当B点的横坐标为时,求线段AC的长;�
(2)当点B在x轴上运动时,设点C的纵、横坐标分别为y、x,试求y与x的函数关系式(当点B运动到O点时,点C也与O点重合);� (3)设过点P(0,-1)的直线l与(2)中所求函数的图象有两个公共点M1(x1,y1)、M2(x2,y2),且x12+x22-6(x1+x2)=8,求直线l的解析式.�
[解析] (1)方法一:在Rt△AOB中,可求得AB=
∵∠OAB=∠BAC,∠AOB=∠ABC=Rt∠ ,∴△ABO∽△ABC,∴ ,由此可求得:AC=
方法二:由题意知:tan∠OAB=

(2)方法一:当B不与O重合时,延长CB交y轴于点D,过C作CH⊥x轴,交x轴于点H,则可证得AC=AD,BD=--4′
∵AO⊥OB,AB⊥BD,∴△ABO∽△BDO,则OB2=AO×OD----6′,即
化简得:y= ,当O、B、C三点重合时,y=x=0,∴y与x的函数关系式为:y=
方法二:过点C作CG⊥x轴,交AB的延长线于点H,则AC2=(1-y)2+x2=(1+y)2,化简即可得。
(3)设直线的解析式为y=kx+b,则由题意可得: ,
消去y得:x2-4kx-4b=0,则有 ,由题设知:
x12+x22-6(x1+x2)=8,即(4k)2+8b-24k=8,且b=-1,
则16k2-24k -16=0,解之得:k1=2,k2= ,
当k1=2、b=-1时,
△=16k2+16b=64-16>0,符合题意;当k2= ,b=-1时,△=16k2+16b=4-16<0,不合题意(舍去),
∴所求的直线l的解析式为:y=2x-1

7、如图,在平面直角坐标系中,两个函数 的图象交于点A。动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQ‖x轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S。
(1)求点A的坐标。
(2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式。
(3)在(2)的条件下,S是否有最大值?若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由。
(4分)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与△OAB重叠部分面积最大时,运动时间t满足的条件是____________。
[解析] (1)由 可得
∴A(4,4)。
(2)点P在y = x上,OP = t,
则点P坐标为
点Q的纵坐标为 ,并且点Q在 上。
∴ ,
即点Q坐标为 。

当 时, 。
当 ,

当点P到达A点时, ,
当 时,


(3)有最大值,最大值应在 中,

当 时,S的最大值为12。
(4) 。

8、如图1: ACB与 DCE是全等的两个直角三角形,其中 ACB= DCE=900,AC=4,BC=2,点D、C、B在同一条直线上,点E在边AC上.
(1)直线DE与AB有怎样的位置关系?请证明你的结论;
(2)如图2若 DCE沿着直线DB向右平移多少距离时,点E恰好落在边AB上,求平移距离DD,;
(3)在 DCE沿着直线DB向右平移的过程中,使 DCE与 ACB的公共部分是四边形,设平移过程中的平移距离为 ,这个四边形的面积为 ,求 与 的函数关系式,并写出它的定义域.

[解析] (1)直线DE与AB垂直.
证明:延长DE交AB于点F
∵ ACB与 DCE是全等的两个直角三角形
∴∠D=∠A
∵ ACB=900
∴∠A+∠B=900
∴∠D+∠B=900
∴ BFD=900
∴直线DE与AB垂直.
(2)设平移距离DD,=
则CC,= ,BC,=
∵AC‖E,C,

又BC=2,EC=E,C,=2 AC=4


所以平移距离DD,为1.
(3)在 DCE沿着直线DB向右平移的过程中
第一种情况:
如图当点E落在 ACB内部或边AB上
设D,E,与边AC交于点G
∵DD,=
∴CD,=
由题意可知:D,G‖DE
∴ ∽

又 CD=4,



∴ 定义域为
第二种情况
如图当点E落在 ACB外部,且点C与点B重合或在CB的延长线上,
点D在线段CD上(与点C不重合).
设D,E,分别交边AC、AB于点G、F
由第一种情况可知:
由(1)可知:D,F⊥AB
∴ D,FB = ACB=900
又 ABC= D,BF
∴ ∽

又 AB= =

BD,=


=
即: 定义域为
7、如图,在平面直角坐标系中,两个函数 的图象交于点A。动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQ‖x轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S。
(1)求点A的坐标。
(2)试求出点P在线段OA上运动时,S与运动时间t(秒)的关系式。
(3)在(2)的条件下,S是否有最大值?若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由。
(4分)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与△OAB重叠部分面积最大时,运动时间t满足的条件是____________。
[解析] (1)由 可得
∴A(4,4)。
(2)点P在y = x上,OP = t,
则点P坐标为
点Q的纵坐标为 ,并且点Q在 上。
∴ ,
即点Q坐标为 。

当 时, 。
当 ,

当点P到达A点时, ,
当 时,


(3)有最大值,最大值应在 中,

当 时,S的最大值为12。
(4) 。

8、如图1: ACB与 DCE是全等的两个直角三角形,其中 ACB= DCE=900,AC=4,BC=2,点D、C、B在同一条直线上,点E在边AC上.
(1)直线DE与AB有怎样的位置关系?请证明你的结论;
(2)如图2若 DCE沿着直线DB向右平移多少距离时,点E恰好落在边AB上,求平移距离DD,;
(3)在 DCE沿着直线DB向右平移的过程中,使 DCE与 ACB的公共部分是四边形,设平移过程中的平移距离为 ,这个四边形的面积为 ,求 与 的函数关系式,并写出它的定义域.

[解析] (1)直线DE与AB垂直.
证明:延长DE交AB于点F
∵ ACB与 DCE是全等的两个直角三角形
∴∠D=∠A
∵ ACB=900
∴∠A+∠B=900
∴∠D+∠B=900
∴ BFD=900
∴直线DE与AB垂直.
(2)设平移距离DD,=
则CC,= ,BC,=
∵AC‖E,C,

又BC=2,EC=E,C,=2 AC=4


所以平移距离DD,为1.
(3)在 DCE沿着直线DB向右平移的过程中
第一种情况:
如图当点E落在 ACB内部或边AB上
设D,E,与边AC交于点G
∵DD,=
∴CD,=
由题意可知:D,G‖DE
∴ ∽

又 CD=4,



∴ 定义域为
第二种情况
如图当点E落在 ACB外部,且点C与点B重合或在CB的延长线上,
点D在线段CD上(与点C不重合).
设D,E,分别交边AC、AB于点G、F
由第一种情况可知:
由(1)可知:D,F⊥AB
∴ D,FB = ACB=900
又 ABC= D,BF
∴ ∽

又 AB= =

BD,=


=
即: 定义域为
第2个回答  2008-04-22
靠...楼上..-.-
算了不扯别的,个人做这种题的时候都是先假设存在,而且存在很多点(2~4个)(无论如何都存在...要不然这题出个啥劲儿.)
然后根据假设,反推出在存在的情况下需要什么条件,比如是:当满足什么什么相似啊全等啊角相等啊特殊角啊...之类的时候就可以存在这点!!
之后按着逆向思维再推,把你想要的条件全假设出来,假设出来的条件就是符合题意的,然后看看这条件满足的点是否在抛物线上,一般来说是的.......本回答被提问者采纳
第3个回答  2009-12-09
最后一题主要是函数中的几何,或者几何中的函数。一般中考题目出的就是新颖,就是让你没见过。这些其实都不怕。你要做的是,每次做过的压轴题要归纳方法。往往中考时压轴题就那么几种解法,只要多归纳,掌握了,压轴题一般差不多都能解出来。此外,归纳时一定要找到基本图形,比如说几何中的相似三角形,函数中的一些条件。想到相似三角形肯定会有一大堆的结论,找到你想要的结果题目灵活运用。函数呢,你去找点的坐标。实在不行了再找两点间距离公式。其实压轴题不难,就是新,综合性强,弄明白怎么回事了一点都不难。
第4个回答  2014-11-30
数学的压轴题一般来说都是函数(一般来说是二次函数和一次函数的集合),不过不要紧,第一小题一般来说都是求解析式,只要带入就行,非常简单。另外,在做这题时一定要沉着冷静啊。那么说道掌握只要最基本的解析式,即y=k/x.y=kx+b.y=ax2+bx+c一般来说是没有问题的啊
相似回答