谁知道人教八年级上册数学知识点?拜托了

如题所述

第十一章 全等三角形
一.定义
1.全等形:形状大小相同,能完全重合的两个图形.
2.全等三角形:能够完全重合的两个三角形.
二.重点
1.平移,翻折,旋转前后的图形全等.
2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.
3.全等三角形的判定:
SSS三边对应相等的两个三角形全等[边边边]
SAS两边和它们的夹角对应相等的两个三角形全等[边角边]
ASA两角和它们的夹边对应相等的两个三角形全等[角边角]
AAS两个角和其中一个角的对边开业相等的两个三角形全等[边角边]
HL斜边和一条直角边对应相等的两个三角形全等[斜边,直角边]
4.角平分线的性质:角的平分线上的点到角的两边的距离相等.
5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.
三.注意
1.记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.
第十二章 轴对称
一.定义
1.如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴.我们也说这个图形关于这条直线[成轴]对称.
2.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点.
3.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
4.有两边相等的三角形叫做等腰三角形.
5.三条边都相等的三角形叫做等边三角形.
二.重点
1.把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.
2.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.
3.垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.
4.垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
5.如何做对称轴:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此,我们只要找到一对再对应点,作出连接它们的线段的垂直平分线就可以得到这个图形的对称轴.
同样,对于轴对称图形,只要找到任意一组对应点所连线段的垂直平分线,就得到此图形的对称轴.
6.轴对称图形的性质:对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.
由个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状,大小完全相等.
新图形上的每一点,都是原图形上的某一点关于直线的对称点.
连接任意一对对应点的线段被对称轴垂直平分.
7.等腰三角形的性质:等腰三角形的两个底角相等[等边对等角]
等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合[三线合一]
[等腰三角形是轴对称图形,底边上的中线(,底边上的高,顶角平分线)所在直线就是它的对称轴.
等腰三角形两腰上的高或中线相等.
等腰三角形两底角平分线相等.
等腰三角形底边上高的点到两腰的距离之和等于底角到一腰的距离.
等腰三角形顶角平分线,底边上的高,底边上的中线到两腰的距离相等.]
8.等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等[等角对等边].
[如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.]
9.等边三角形的性质: 等边三角形的三个内角都相等,并且每一个角都等于60°.
10.等边三角形的判定:等边三角形的三个内角都相等,并且每一个角都等于60°.
三个角都相等的三角形是等边三角形.
有一个角是60°的等腰三角形是等边三角形.
11.直角三角形的性质之一:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
12.在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大.
三.注意
1.(x,y)关于原点对称(-x.-y)
关于x轴对称(x,-y)
关于y轴对称(-x,y)
2.用坐标表示轴对称.

第十三章 实数
一.定义
1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.
2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.
3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.
4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.
5.无限不循环小数又叫无理数.
6.有理数和无理数统称实数.
7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的.
二.重点
1.平方与开平方互为逆运算.
2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.
3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.
4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.
5. 数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
三.注意
1.被开方数一定是非负数.
2. 0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.
3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.

第十四章 一次函数
一.定义
1.在按某种规律变化的过程中,数值发生变化的量为变量,始终不变的是常量.
2.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么x是自变量,y是x的函数.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.
3.一般地,形如y=kx[k是常数,k≠0]的函数,叫做正比例函数.其中k叫做比例系数.[一个数字与一个自变量的积的形式]
4.形如y=kx+b[k,b为常数,k≠0]的函数,叫做一次函数.
二.重点
1.自变量的取值范围:
(1)整式型 y=3x+1──全体实数
(2)分式型 ──使分母不为0
(3)根式型 ──使被开方数非负
(4)综合型
2.作函数图象的一般步骤:
(1)列表
(2)描点
(3)连线
3.一般地,正比例函数y=kx[k是常数,k≠0]的图象是一条经过原点的直线,我们称它为直线y=kx,当k>0时,直线y=kx经过第一三象限,y随x的增大而增大;当k<0时,直线y=kx经过第二四象限,y随x的增大而减小.
4.待定系数法的应用.
5.用函数图象看一元一次方程的解.[2x+5=17]
解:原方程化为2x-12=0
画出y=2x-12的图象

由图象可知,直线y=x-12与x轴的交点为(6,0)
所以x=6
6.用函数图象看一元一次不等式[5x+6>3x+10]
解1:原不等式化为2x-4>0
画出函数y=2x-4的图象

由图象可知,当x>2时直线y=2x-4的图象在x轴上方
所以不等式2x-4>0的解集为x>2
所以原不等式的解集为x>2
解2:画出函数y1=5x+6,y2=x+10的图象

由图象可知,当x>2时,直线y1的图象在y2的上方,即y1>y2
所以不等式5x+6>3x+10的解集为x>2
7.用函数图象看二元一次方程组
解:原方程组化为{[用含x的式子表示y的形式]
画出函数 和 的图象

由图象可知,直线 与 的交点为(1,1)
所以方程组{…的解为{x=1,y=1
所以原方程组的解为{x=1,y=1
三.注意
1.常量和变量相对而言,不是永远不变的.
2.反比例函数的图像是双曲线.
3.正比例函数是一种特殊的一次函数.
4.选择方案.

第十五章 整式的乘除与因式分解
一.定义
1.整式乘法
(1).am·an=am+n[m,n都是正整数]
同底数幂相乘,底数不变,指数相加.
(2).(am)n=amn[m,n都是正整数]
幂的乘方,底数不变,指数相乘.
(3).(ab)n=anbn[n为正整数]
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
(4).ac5·bc2=(a·b) ·(c5·c2)=abc5+2=abc7
单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
(5).m(a+b+c)=ma+mb+mc
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,
(6).(a+b)(m+n)=am+an+bm+bn
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘.
2.乘法公式
(1).(a+b)(a-b)=a2-b2
平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.
(2).(a±b)2=a2±2ab+b2
完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2倍.
3.整式除法
(1)am÷an=am-n[a≠0,m,n都是正整数,且m>n]
同底数幂相除,底数不变,指数相减.
(2)a0=1[a≠0]
任何不等于0的数的0次幂都等于1.
(3)单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
(4)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
4.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
二.重点
1.(x+p)(x+q)=x2+(p+q)x+pq
2.x3-y3=(x-y)(x2+xy+y2)
3.因式分解两种基本方法:
(1)提公因式法.提取:数字是各项的最大公约数,各项都含的字母,指数是各项中最低的.
(2)公式法.
①a2-b2=(a+b)(a-b)
两个数的平方差,等于这两个数的和与这两个数的差的积
②a2±2ab+b2=(a±b)2
两个数的平方和加上[或减去]这两个数的积的2倍,等于这两个数的和[或差]的平方.
三.注意
1.添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面时负号,括到括号里的各项都改变符号.
温馨提示:答案为网友推荐,仅供参考
第1个回答  2011-08-13
1全等三角形的对应边、对应角相等 ­

2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ­

3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ­

4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ­

5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ­

6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ­

7 定理1 在角的平分线上的点到这个角的两边的距离相等 ­

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ­

9 角的平分线是到角的两边距离相等的所有点的集合 ­

10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ­

21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ­

22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ­

23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ­

24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ­

25 推论1 三个角都相等的三角形是等边三角形 ­

26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ­

27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ­

28 直角三角形斜边上的中线等于斜边上的一半 ­

29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ­

30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ­

31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 ­

32 定理1 关于某条直线对称的两个图形是全等形 ­

33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ­

34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 ­

35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 ­

36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ­

37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 ­

38定理 四边形的内角和等于360° ­

39四边形的外角和等于360° ­

40多边形内角和定理 n边形的内角的和等于(n-2)×180° ­

41推论 任意多边的外角和等于360° ­

42平行四边形性质定理1 平行四边形的对角相等 ­

43平行四边形性质定理2 平行四边形的对边相等 ­

44推论 夹在两条平行线间的平行线段相等 ­

45平行四边形性质定理3 平行四边形的对角线互相平分 ­

46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ­

47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ­

48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ­

49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ­

50矩形性质定理1 矩形的四个角都是直角 ­

51矩形性质定理2 矩形的对角线相等 ­

52矩形判定定理1 有三个角是直角的四边形是矩形 ­

53矩形判定定理2 对角线相等的平行四边形是矩形 ­

54菱形性质定理1 菱形的四条边都相等 ­

55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ­

56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ­

57菱形判定定理1 四边都相等的四边形是菱形 ­

58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ­

59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ­

60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ­

61定理1 关于中心对称的两个图形是全等的 ­

62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ­

63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ­

点平分,那么这两个图形关于这一点对称 ­

64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ­

65等腰梯形的两条对角线相等 ­

66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ­

67对角线相等的梯形是等腰梯形 ­

68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ­

相等,那么在其他直线上截得的线段也相等 ­

69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ­

70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ­

三边 ­

71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ­

的一半 ­

72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ­

一半 L=(a+b)÷2 S=L×h ­

73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc ­

如果ad=bc,那么a:b=c:d ­

74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d ­

75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ­

(a+c+…+m)/(b+d+…+n)=a/b ­

76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 ­

线段成比例 ­

77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 ­

78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 ­

79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 ­

80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ­

81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) ­

82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 ­

83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) ­

84 判定定理3 三边对应成比例,两三角形相似(SSS) ­

85 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 ­

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 ­

86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 ­

分线的比都等于相似比 ­

87 性质定理2 相似三角形周长的比等于相似比 ­

88 性质定理3 相似三角形面积的比等于相似比的平方 ­

89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 ­

于它的余角的正弦值 ­

90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 ­

于它的余角的正切值 ­

91圆是定点的距离等于定长的点的集合 ­

92圆的内部可以看作是圆心的距离小于半径的点的集合 ­

93圆的外部可以看作是圆心的距离大于半径的点的集合 ­

94同圆或等圆的半径相等 ­

95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 ­

径的圆 ­

96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 ­

平分线 ­

97到已知角的两边距离相等的点的轨迹,是这个角的平分线 ­

98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 ­

离相等的一条直线 ­

99定理 不在同一直线上的三点确定一个圆。 ­

100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 ­

101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ­

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ­

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 ­

102推论2 圆的两条平行弦所夹的弧相等 ­

103圆是以圆心为对称中心的中心对称图形 ­

104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 ­

相等,所对的弦的弦心距相等 ­

105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 ­

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 ­

106定理 一条弧所对的圆周角等于它所对的圆心角的一半 ­

107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 ­

108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 ­

对的弦是直径 ­

109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 ­

110定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 ­

的内对角 ­

111①直线L和⊙O相交 d<r ­

②直线L和⊙O相切 d=r ­

③直线L和⊙O相离 d>r ­

112切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 ­

113切线的性质定理 圆的切线垂直于经过切点的半径 ­

114推论1 经过圆心且垂直于切线的直线必经过切点 ­

115推论2 经过切点且垂直于切线的直线必经过圆心 ­

116切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, ­

圆心和这一点的连线平分两条切线的夹角 ­

117圆的外切四边形的两组对边的和相等 ­

118弦切角定理 弦切角等于它所夹的弧对的圆周角 ­

119推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 ­

120相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 ­

相等 ­

121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 ­

两条线段的比例中项 ­

122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 ­

线与圆交点的两条线段长的比例中项 ­

123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 ­

124如果两个圆相切,那么切点一定在连心线上 ­

125①两圆外离 d>R+r ②两圆外切 d=R+r ­

③两圆相交 R-r<d<R+r(R>r) ­

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r) ­

126定理 相交两圆的连心线垂直平分两圆的公共弦 ­

127定理 把圆分成n(n≥3): ­

⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ­

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 ­

128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 ­

129正n边形的每个内角都等于(n-2)×180°/n ­

130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 ­

131正n边形的面积Sn=pnrn/2 p表示正n边形的周长 ­

132正三角形面积√3a/4 a表示边长 ­

133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 ­

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 ­

134弧长计算公式:L=n兀R/180 ­

135扇形面积公式:S扇形=n兀R^2/360=LR/2 ­

136内公切线长= d-(R-r) 外公切线长= d-(R+r)­
相似回答