裴波那契数列的计算公式?

如题所述

第1个回答  2012-05-15
方法一:利用特征方程(线性代数解法)   线性递推数列的特征方程为:   X^2=X+1   解得   X1=(1+√5)/2,,X2=(1-√5)/2。   则F(n)=C1*X1^n + C2*X2^n。   ∵F(1)=F(2)=1。   ∴C1*X1 + C2*X2。   C1*X1^2 + C2*X2^2。   解得C1=√5/5,C2=-√5/5。   ∴F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)。  
 方法二:待定系数法构造等比数列1(初等代数解法)   设常数r,s。   使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。   则r+s=1, -rs=1。   n≥3时,有。   F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。   F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。   F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。   ……   F(3)-r*F(2)=s*[F(2)-r*F(1)]。   联立以上n-2个式子,得:   F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]。   ∵s=1-r,F(1)=F(2)=1。   上式可化简得:   F(n)=s^(n-1)+r*F(n-1)。   那么:   F(n)=s^(n-1)+r*F(n-1)。   = s^(n-1) + r*s^(n-2) + r^2*F(n-2)。   = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。   ……   = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)。   = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。   (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。   =[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。   =(s^n - r^n)/(s-r)。   r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2。   则F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
  方法三:待定系数法构造等比数列2(初等代数解法)   已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。   解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。   得α+β=1。   αβ=-1。   构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。   所以。   an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。   an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。   由式1,式2,可得。   an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。   an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。   将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。本回答被网友采纳
第2个回答  2013-01-14
F(n+2) = F(n+1) + F(n)
相似回答